What has collective wisdom to do with wisdom?

Daniel Andler

UFR de philosophie et sociologie, Université Paris-Sorbonne (Paris IV)
Département d’études cognitives, École normale supérieure
Institut universitaire de France

Conventional wisdom holds two seemingly opposed beliefs. One is that groups are often much better than individuals at dealing with certain situations or solving certain problems. The other is that groups are usually, and some say always, at best as intelligent as their average member and at worst even less than the least intelligent.

Consistency would seem to be easily re-established by distinguishing between advanced, sophisticated social organizations which afford the supporting communities a high level of collective performance, and primitive, mob-like structures which pull the group towards the lower end of the achievement scale. But this reconciliation meets with some objections. The most familiar ones concern the mixed record of elaborate social systems, which are said to occasionally or even, according to some accounts, systematically produce wrong decisions, poor assessments, disastrous plans, counterproductive measures, etc. A more recent set of objections rests on cases where ‘crowds’, i.e. groups not organized in a sophisticated way, produce good results, in fact, results which better those of most, or even all, members of the group. Many such cases are collected in James Surowiecki’s book The Wisdom of Crowds, which argues more generally in favor of an ‘order out of chaos’ view of collective thinking: whether sophisticated or simple, social organizations for the production of knowledge or problem-solving can benefit from the absence of certain individualistic constraints which are traditionally thought to foster excellence in cognitive tasks.

This flavor of paradox is enhanced by Surowiecki’s choice of phrase: at the surface level, ‘wisdom of crowds’ conflicts with the well-entrenched cliché of the folly of crowds; but at a deeper level, Surowiecki seems to appeal to one frequent connotation of ‘wisdom’ which is precisely its paradoxical character. Whether Surowiecki actually intended to exploit this connotation is not entirely clear, as he uses ‘wisdom’, ‘intelligence’ or even sometimes ‘knowledge’; and similarly, ‘wise’, ‘intelligent’, and even ‘smart’, interchangeably. However, and despite the fact that a lot of attention is given throughout to ‘group’ (or ‘collective’) ‘intelligence’, the book, as I read it, also strongly suggests that the wisdom of crowds should be seen as more than mere collective intelligence, and be thought of instead as partaking of wisdom. Indeed, wisdom of crowds does seem to share with the ordinary concept of wisdom some important features, which in particular do not typically belong to intelligence. Thus as a concept, and as a project, wisdom of crowds invites us to take a closer look at wisdom, in particular in its relation to intelligence or rationality, quite in the way AI invited us decades ago, and in a new guise today invites us again, to take a closer look at (human, ordinary) intelligence, in particular in its relation to cognition or logic for example.

The paper is organized as follows. It starts with a brief clarification of the target phenomenon: wisdom of crowds, in Surowiecki’s book, covers a wide variety of phenomena which cannot be encompassed within a single approach, and I will spell out where my focus lies, viz. in the ‘mindless’ processes of aggregation of individual cognitive competences which tend to result in cognitive progress. I will then propose a contrastive characterization of rationality, intelligence and wisdom, as they apply to individuals. Next I will examine the possibility of extending these terms to collective entities or processes (leaving rationality to the side, for reasons which will become clear) and ask to what extent wisdom of crowds can be regarded as a form or

2 See also his reference (ibid. 286) to H. Rheingold’s 2002 book Smart Mobs.
3 See e.g. Haugeland 1981, Dennett 1978.
realization of collective intelligence and/or collective wisdom. The answer will turn out to depend on which variety of collective processes one is considering: wisdom of crowds in the sense which is central to Surowiecki’s argument will qualify as collective intelligence, not as collective wisdom. I will argue, on the other hand, that there exists a more familiar kind of collective process which does meet the requirements on a reasonable extension of the concept of wisdom to the collective level, but is at best distantly related to what Surowiecki reports on and commends.

1. Wisdom of crowds and collective cognitive processes

Processes which pool, in one way or another, the cognitive resources of a plurality of human beings, are anything but rare and unusual. Humans have forever been discussing and settling matters collectively. From day-to-day decisions about what, where and when to hunt, pluck or fish, cook, sow, or graze, to the most elaborate systems of knowledge production (such as contemporary science) and deliberation (such as contemporary advanced democracies), people attempt to pool together their intellectual resources in order to come up with answers which they hope, quite reasonably, to be on the average better than any of those which they would have reached individually had they proceeded on their own. Such cognitive processes, in which potentially all the cognitive and communicative resources of the individual participants are on call, I propose to call thickly collective.

In contrast, processes in which individual agents, far from deliberating, exchanging information and arguments, simply provide their own conclusions, which are then fed to some aggregating algorithm or mechanism, I will label thinly collective. Most forms of collective cognition studied by legal theorists, political scientists and historians, are of the thick sort. These fall under the wisdom of crowds concept in its widest extension, but the emphasis, in Surowiecki’s book as well as related work in the recent scholarly literature, is on thin collective processes (examples follow presently).

The main contrasts between the two sorts are the following. (1) Individuals participating in thick processes typically interact, in thin processes they do not. (2) During the course of interaction characteristic of thick processes, individuals can, and often do, change their minds or go from indecision or confusion to a firm opinion and a relatively clear view. In thin processes, there is no place for such intra-individual dynamics. (3) The aggregating procedure of a thin process is insensitive to everything but certain data delivered in a predetermined format, and that format is fixed throughout the procedure. In particular, the procedure is insulated from the participating individuals’ views on the process; for example, it cannot be improved or modified in any way as the process unfolds. In contrast, thick processes allow, except perhaps in highly formalized settings, for changes in the procedure. In particular, as the process unfolds, participants usually have an opportunity to form and revise their understanding of the procedure and may argue in favor of changing it.

In fact, the two types of processes are polar opposites, between which intermediate cases arise. Classical ‘thick’ procedures can be simplified so as to limit interactions to a more or less restricted set, and symmetrically ‘thin’ procedures can be enriched so as to allow ‘thicker’ information to be transmitted and aggregated. Locating a particular collective process on this scale can be difficult, a challenge for the historian, the political scientist or the cognitive scientist. Sometimes there is no obvious way to individuate a process. For example, an election can be seen as a thin process if it is limited to the voting procedure, while it appears as thick, or somewhat thicker, if the campaign is included.

One condition however is essential to thinly collective processes: the aggregating function must be filled by a computational, automatic mechanism. The central agency must be essentially ‘dumb’, or rather ‘semantically blind’ in order for the ‘wisdom of crowd’ effect to be fully expressed. In the simplest case, the individual inputs are numerical quantities (the estimated weight of a prize ox, a preference order, a one- or two-dimensional interval expressing the agent’s estimate of the location of some unknown, etc.), and the aggregation is performed by averaging, or some comparably simple operation. More complex cases are prediction markets, with the bookmaker implementing a possibly non strictly algorithmic procedure, yet still

5 An example might be the Delphi method; see e.g. Linstone & Turoff 1977.
6 The disputed conceivability of genuine artificial intelligence makes this point hard to put concisely: ‘dumb’ computers may turn out to be ‘intelligent’. Yet they remain, on the classical analysis, ‘syntactic’ machines, with no direct, ‘first-person’ access to the semantic content of the symbolic structures which they process; hence the appeal to ‘semantic blindness’. In practice however, there is in most cases no difficulty involved in locating a given collective cognitive process on the ‘blindness’ or automaticity axis, and in locating it accordingly on the thin-thick axis.
7 I don’t know enough about prediction markets to feel any confidence on this point.
restricted to the odds on offer, and accepting no further information or rational consideration bearing directly on the situation under scrutiny.

Surowiecki distinguishes, within the genus of ‘collective wisdom’, three species of collective processes according whether they aim at acquiring knowledge, at coordinating a group, or at getting its members to cooperate. Although quite different in many ways, as problem-solving mechanisms they share a common core (coordination and cooperation involving an extra layer of collective processes). Like Surowiecki, I will restrict myself to the first kind of process, which should help keep the discussion focussed. I will call these processes cognitive collective processes (CCPs).

2. Rationality, intelligence, and wisdom

Wisdom and intelligence are inextricably intertwined in common parlance. This is especially true for the adjectival forms, ‘wise’ and ‘intelligent’: in many cases, exchanging one for the other in a proposition seems to preserve its core meaning, although not necessarily all the connotations. On the other hand, saying of someone that she is a wise person is not the same as saying she is intelligent, or remarkably intelligent. The substantives lend themselves even less to interchange: wisdom is typically associated, in folk psychology, to age and experience, intelligence is found also in the very young. Such intuitions based on ordinary usage are not to be taken on board uncritically. I will try and show however that (i) there is a distinction and (ii) that it does not rest solely on a difference in domains of deployment.

‘Wisdom’ and ‘intelligence’ are not only notoriously slippery concepts, they are also extraordinarily loaded terms. Analytic philosophers, by and large, have all but ruled them out of bounds\(^8\); they have thought of them as too loose for theoretical purposes, leaving them for popular writers, psychologists, computer scientists to discuss. Intelligence has been represented, on the contemporary philosophical scene, by rationality, cognition or knowledge. Wisdom has split into two very unequal parts: practical wisdom is extensively scrutinized by moral philosophers under labels such as ‘flourishing’, ‘the good life’, ‘prudence’; theoretical wisdom appears in epistemology under the guise of ‘judgment’ or ‘reasonableness’\(^9\). Wisdom as a term of art is definitely philosophically outdated. As for intelligence, its theoretical status has been put into question, due to its less than stellar (some would say disastrous) scientific track record, and also for ethical and political reasons. Yet we cannot avert our gaze from these contested topics if we want to get clearer on the purported ‘wisdom’ of the phenomena described by Surowiecki.

In contrast, rationality is all the more philosophically respectable as it is a term of art which only philosophers and social scientists use, although the adjectival forms (rational, irrational) have been incorporated in common parlance. As just mentioned, it is closely connected to intelligence. Perhaps rationality is just the philosopher’s code word for intelligence. Let us take a closer look, first at one, then at the other.

Rationality

As an area of research, rationality is fairly well-defined. As a concept, however, it is not: there is no consensus on what it covers.\(^10\) There is nothing alarming about this: the important thing is that there exist a rich set of overlapping theories of rationality, whose precise articulation constitutes a stimulating goal for the entire field.\(^11\) For present purposes however, a working definition can be offered, at the cost of some methodological decisions which will remain unmotivated here for reasons of space. The first is to restrict the concept to mental entities (states, processes, dispositions..., as opposed, in particular, to laws, rules, customs, institutions), with occasional extensions to individuals harboring such entities. The second decision is to regroup all current conceptions of rationality under three headings.

N-rationality (N for ‘narrow’) consists in a demand for consistency and coherence among the beliefs of an agent, or between her beliefs and her goals, at any moment in time or over an extended period. Consistency in turn is cashed in as absence of contradiction, and coherence, a more problematic notion, aims at characterizing

\(^8\) Characteristically, Lalande’s *Vocabulaire* (1\(^{\text{st}}\) edition 1902-1923, 5\(^{\text{th}}\) edition 1947) has entries for both terms, while the comparably sized *Cambridge Dictionary of Philosophy* (Audi 1995) has neither.

\(^9\) This traditional division between two kinds of wisdom will be questioned in what follows (§2).

\(^10\) See for example Mele & Rawling 2004. For another piece of lexicographic evidence, as of this writing there is no ‘rationality’ entry in the *Stanford Encyclopedia of Philosophy*.

\(^11\) As argued and illustrated by Spohn (2002).
the unity of the set under consideration, the extent to which its various elements are connected, and the principled or systematic nature of the connections.

R- rationality (R for ‘resistance’) consists in the capacity to resist distorting factors in the formation of one’s beliefs, intentions etc. Rationality on this general view is an active avoidance of subjectivity, dogma, prejudice, bias such as discounting of less salient or less favorable evidence, disregard of base rate, reliance on surface features of wordings, wishful thinking, bad faith, etc.

Finally, B- rationality (B for ‘broad’) is a commitment to the deliveries of reason. Reason in turn stands for a variety of demands: objectivity, reproducibility across contexts and persons, conformity to recognized norms, rules and method of reasoning, respect for evidence, openness to and curiosity for new facts, preference for comprehensiveness, consistency, coherence, careful weighing of relevant factors, and, importantly, acceptance of the dispassionate critical game of public giving and taking of reasons.

The third decision is to give prominence to B-rationality, on the grounds that the connection of rationality with reason seems to be part of any non-arbitrary definition: B-rationality seems to be the most basic as well as the most inclusive concept, and this leads me to propose the following working definition: A set of mental entities (states, processes, dispositions...) is rational to the extent where it accords with the demands of reason: objectivity, communicability, public reason-giving and taking, including honest acceptance of critical argument, regard for evidence and openness to novel facts, comprehensiveness, consistency and coherence.

Intelligence

As remarked earlier, intelligence, unlike rationality, is a household word with a thousand and one uses, and intelligence judgments often seem to say at least as much about the judge’s tastes and abilities as about the person being judged. Cognitive science has all but discarded the notion as non-scientific, in large part because it seems to rest on a view of the mind as a homogeneous system, whose performance can be assessed along a single dimension. On the other hand, intelligence is universally seen as an almost priceless commodity and has been the focus of enormous quantification efforts on the part of psychology, working in tandem with educational and military authorities, as well as human resources departments of businesses and administrations. This work has also had momentous consequences in penal practices. Finally, as is well known, Turing and the artificial intelligence movement have defined intelligence for their own purposes, drawing on an essentially unanalyzed reference to human intelligence: intelligence is whatever is exercised by a human agent in order to accomplish a task generally considered as requiring... intelligence; and a machine which can carry out such a task is thereby considered to exhibit some degree of intelligence.

This gives us a lead. First, intelligence is to a large extent a matter of getting the job done, i.e. of solving problems in finite time. Second, this performance cannot be the outcome of a series of strokes of luck: it results from enduring properties of the intelligent entity, which result in the capacity to understand the world or, the way “things are”. The two dimensions are not wholly independent. The understanding is an important factor of the problem-solving capacity, and at the same time it is heavily dependent on it: one gets to understand the world in part by solving problems of categorization, causal attribution, etc. Yet they are distinct: understanding is also brought about by cultural transmission (in particular formal and informal learning, imitation), by experience, and for some aspects of the human world by empathy; conversely, the solution to certain problems seems to require very little, if any, world understanding—that would seem to be the case of abstract logic, mathematics and other formal set-ups such as chess, go and other games and puzzles.

Intelligence comes in degrees. Although sometimes the term of reference is left unstated, it is an essentially comparative notion. On this count, the two dimensions of intelligence are also correlated, but only partly so. It is hard to imagine a very deep understanding of the world accompanied by a very low problem-solving capacity, and the reverse seems true: except for ill-understood and rare cases of prodigy-level performance in some restricted kinds of problem-solving, accompanied by very feeble understanding of the world (idiots savants, certain forms of autism), a high problem-solving capacity is a good predictor of a fair level of world understanding. However one may score high on understanding and modestly on problem-solving, and conversely. All of this remains true if one chooses to break down intelligence into domain-specific abilities.

12 See e.g. Piatelli-Palmarini 1980, Barkow et al. 1992. For a dissenting view regarding the cognitive-scientific standing of intelligence, see Sternberg & Prets, 2005.

13 As illustrated for example in Flynn 2007.

15 There is no need here to open a debate about forms of intelligence and the independent reality of general intelligence (the psychologists’ ‘g factor’).
How do psychologists view intelligence? Problem-solving is directly or indirectly involved in their characterization of intelligence, but it is not usually complemented by ‘world understanding’. Instead, they list elementary capacities, such as those which form the WISC IQ test: information, arithmetic, vocabulary, comprehension (a very elementary form of world understanding), picture completion, object assembly, coding, picture arrangement, similarities. Alternatively, R.J. Sternberg proposes to complement ‘analytic intelligence’ (abstract problem-solving) with ‘creative intelligence’ and ‘practical intelligence’ (deployed when applying concepts to real-world situations).

In contrast, J.R. Flynn suggests that before we can start to make sense of the famous Flynn effect (the robust and steady increase of IQ in all populations, during the 20th century, at a rate in the order of .3 IQ points per year), “we must dissect intelligence into solving mathematical problems, interpreting the great works of literature, finding on-the-spot solutions, assimilating the scientific worldview, critical acumen, and wisdom.” This is remarkable in two ways: first, it features world understanding prominently; second, the view of intelligence it proposes is externalist in part, in the sense where what counts as ‘understanding’ and what counts as ‘the world’ are not determined on purely individualistic grounds, but have a crucial social-cultural component. The internal component Flynn attempts to explicate, later in the book, by proposing a pre-theoretical concept of intelligence in the form of “an answer to a question: what traits affect our ability to solve problems with cognitive content?”. He lists mental acuity (“the ability to provide on-the-spot solutions” to novel problems), habits of mind, attitudes (which “lay the foundations for acquiring habits of mind”), knowledge and information, speed of information processing, and memory retrieval.

Psychologists thus weigh between, or combine internalist or partly externalist functional definitions of intelligence and ‘chemical’ definitions, which list elementary ‘ingredient’ properties and/or sources of intelligence.

Faced with this rather complicated background, on the one hand, and the question, Do CCPs qualify as intelligent and/or wise?, on the other, we find ourselves in a situation similar to that of Turing. We can follow his example, by offering a functional definition of intelligence, but cannot avail ourselves of a pre-theoretical unanalyzed notion of (human, individual) intelligence. The stipulational definition I propose is this: Intelligence is the capacity to understand the world and to use this understanding in order to find in due time acceptable solutions to an unlimited variety of pressing problems, including problems arising from the need to better understand (describe, explain, predict) the world. The definition is to be understood comparatively, thus allowing for degrees of intelligence in different individuals and relative to different realms, and partly dependent on the cultural context. In particular, it is intended to make room for a modulation of performance according to the region to which someone’s mind is attuned, and according to the degree of versatility achieved—the breadth of problems which can be successfully attacked, and the fluid passage from one kind to another.

The link between rationality and intelligence

As could be expected, under the stipulative definitions I have proposed rationality and intelligence come out as closely connected. Intelligence enlists rationality. Reason is the best proven resource for accomplishing the typical tasks facing intelligence: it is a rare problem which does not benefit from the recommendations of reason for its resolution. These recommendations can be positive—for example, coherence and comprehensiveness are often good heuristics. The instrumental role of rationality also comes into play: wanting to solve a problem and believing that this requires solving some subproblem leads one to a course of action which is conducive to the solution of that subproblem. But reason’s recommendations can also be, and arguably are more often used negatively: rationality rules out erroneous solutions, for examples, those which violate the consistency requirement, or those which succumb to one or another kind of bias. Here the R-side of rationality is on full display: intelligence enrolls R-rationality to prune its search tree. Altogether, intelligence is a rational employer of reason, and in particular tends to deploy typically rational methods.

Connected as they are, rationality and intelligence are nevertheless distinct. This is commonsense: someone may be highly rational and of average intelligence. Rationality, however developed, is compatible with poor memory or a low level of activity, contrary to intelligence. Most importantly, intelligence seems to rely on a kind of grasp which allows it to see the problem situation as a foreground/background structure and

16 See Flynn 2007: 5.
17 Sternberg 1988, as summarized in Flynn 2007: 79.
to zero in on a promising direction. Intelligence piggy-backs on serendipity: it is able to discern, in a chance encounter, the long-sought solution to a seemingly unrelated problem20. Intelligence would thus appear as rationality supplemented by certain further abilities or virtues. But this is an oversimplification, for at least two reasons. First, as commonsense never tires of noticing, and cognitive psychologists have documented, intelligence can co-exist with at least a certain amount of irrationality, that is, clear breaches of rationality. Second, more controversially, intelligence seems compatible with a degree of a-rationality, that is, there may be cases where intelligence floats free of rationality altogether, as when the solution to a given problem immediately ‘springs’ to the mind, without any systematic search, reasoning or deliberation. There is no doubt this happens frequently. It has been abundantly documented in grandmaster-level chess, and it is a feature often seen as characteristic of expertise. What make these cases most is the role played by unconscious processes: there is no guarantee that the agent is not, after all, performing very fast rationality-sanctioned operations, in part due to a huge repertory of memorized situations and a well-trained ‘similarity module’. But then, there is always a level at which conscious processes bottom out, including rational deliberation.

However it be, we may summarize the differences between rationality and intelligence as follows. First, intelligence, unlike rationality, contains a success clause; in this respect, intelligence stands to rationality somewhat in the way performance stands to competence in the realm of language. Second, it cannot be ruled out that intelligence occasionally deploys non-rational procedures to reach its goals.

Should we then reject our initial view of intelligence and rationality as being strongly connected? Hardly. Despite being possibly (if some of my arguments are roughly correct) an oversimplification, the model of intelligence which first emerged, in which intelligence by and large includes rationality and supplements it with performance factors (such as swift application of a judicious and efficient problem-solving or proof-seeking procedure, prompt memory retrieval, etc.) remains basically correct. As for the last suggested discrepancy, which has to do with the possibility of non-rational shortcuts, it can be argued that although intelligence may not always proceed in explicit agreement with rationality, its end products can always be accounted for in rational terms. To put the point more vividly, although intelligence may not always proceed stepwise, with reasons provided for every step, it typically yields trajectories which can be reconstructed as a series of reasoned steps.

\textit{Wisdom}

There is a traditional conception of wisdom which makes it obviously distinct from intelligence, but which is of no relevance for our present purpose. The ‘wisdom of crowds’ (thin CCPs) has clearly not much to do with the higher ends of human existence, with flourishing or with the proper way to “meet with Triumph and Disaster”. In contrast, wisdom is often understood precisely as the art of living a life worth living. Intelligence might then be considered, to put it briefly, as the art of knowing (explaining, predicting, discovering, planning,...), and so the two would appear as distinct by virtue of applying to different domains, and ‘wisdom of crowds’ would appear as a simple misnomer.

On this traditional view, wisdom and intelligence also differ in nature: while wisdom is seen as a virtue of character (exemplified by the Stoic philosopher, the philosopher \textit{tutour court} in the popular imagination, the Zen master, or Kipling’s ‘man’), intelligence is a virtue of reason. Wisdom is about controlling one’s desires, emotions, ultimate goals, and mustering courage and moral strength; intelligence about controlling one’s belief fixation procedures and determining one’s action plans in a rationally optimal way.

This view, which is at least roughly Platonic, aligns therefore two contrasts: (i) knowledge / life; (ii) reason (or intellect) / character. Aristotle however saw, against Plato, that leading the good life is not merely a matter of character, and that it also requires a special sort of \textit{intellectual} virtue: character is not enough to insure the competence required for practical purposes, even supplemented by theoretical knowledge. What is needed is \textit{phronésis}, which sits next to \textit{sophia} (theoretical wisdom) among the intellectual virtues (i.e. those attached to that part of the soul to which reasoning properly belongs)21. On this view, wisdom and intelligence both belong to reason, and thus do not differ in nature, but only in their domains of competence22.

\begin{itemize}
 \item 20The history of science provides many famous examples of so-called ‘chance discoveries’, such as the rediscovery of penicillin by Alexander Fleming in 1928.
 \item 21\textit{Nichomachean Ethics} VI, 2. I am indebted to J. Labarrière’s article on wisdom and temperance in Canto-Sperber 1996: 1326.
 \item 22Thus Robert Nozick writes: “Wisdom is what you need to understand in order to live well and cope with the central problems and avoid the dangers in the predicaments human beings find themselves in” (Nozick 1989: 267, quoted in Ryan 2008; my italics), and proceeds to give a long list of pieces of knowledge, of kinds of know-how, of instances of
\end{itemize}
I would like to propose a symmetrical move, and thus complete the 4-place logical space created by crossing, instead of aligning, the two above-mentioned contrasts. Just as the pursuit of a life worth living calls on two distinct resources, one purely intellectual (practical wisdom in the Aristotelian sense) and the other pragmatic (character: courage, temperance, justice, etc.), I tentatively propose to regard the pursuit of knowledge as resting on two pillars, intelligence (closely related, as we saw, to reason via rationality) and epistemic wisdom, as I will call it. In the following table, the key feature is the presence of two elements on the ‘knowledge’ line; the choice of terms in the other boxes, which might cause concern, is best left unexamined here:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Faculty ➔</th>
<th>Rational/intellectual skills (theoria)</th>
<th>Pragmatic skills (praxis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td>phronēsis or practical wisdom</td>
<td>character</td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>sophia or intelligence</td>
<td>epistemic wisdom</td>
<td></td>
</tr>
</tbody>
</table>

The task before us now is to make a case for epistemic wisdom as an ability or skill not already included in intelligence. The discussion can hardly be conclusive, given the highly elastic semantics of the words under consideration, and its purpose is to motivate a stipulative definition needed to ground an answer to my title-question. The motivation, in rough outline, is straightforward enough: intuitively, putting aside many complexities, one step beyond rationality is intelligence, and one step beyond intelligence is wisdom—after all, wisdom has been associated, since the beginning of philosophy, to the notion of ultimate or supreme quality, and this association remains clearly central to the everyday use of the word. I will attempt to separate wisdom from intelligence by following three clues.

(1) A good starting point may be to think of those cases where intelligence runs out. In the moral domain, the analog might be the cases where one’s powers run out, where there is nothing one can do to prevent or repair misfortune. Traditionally, this is where wisdom takes over: the sage draws the fundamental distinction between what depends on us and what doesn’t, and turns this intellectual insight into fortitude; it allows him to live through the storm while remaining true to himself. In the theoretical domain, epistemic wisdom consists in the inquirer’s recognition and acceptance of her epistemic finitude, and her ability to live with it without renouncing her epistemic ideal. This is the ‘humility’ criterion, first put forward by the wisest of Athenians, Socrates.

It is quite important not to confuse the humility criterion with the notion of bounded rationality. As Jon Elster remarks, the inflexible demand for optimal rationality is not true rationality but ‘addiction to reason’. The key insight incorporated into the notion of bounded rationality is that the truly rational being or system takes into account the finiteness of its resources (including the time available before a decision must be made) and consequently settles for suboptimal answers. More generally, intelligence is supposed to regulate our epistemic agenda: it is clearly within its purview to evaluate the difficulty of certain tasks and to recommend not to take them on. But bounded rationality, or self-aware intelligence, is still rationality or intelligence. “Wisdom,” Elster rightly insists, “is not the ability to terminate deliberation at the right moment, but the ability to know that there may be no (knowable) right moment combined with the serenity to be unaffected by this indeterminacy.”

How do we go from humility to mastery? What makes wisdom different from mere acceptance of defeat? The answer is that wisdom is ‘a man for all seasons’, it is in charge come what may, triumph as well as disaster and everything in between, or, in the epistemic realm, it countenances equally a complete solution to a given problem, a total blank, and all partial solutions. Wisdom’s function is to take in the creature’s predicament in its entirety and, having let the normal processes of rationality, emotion, intelligence run their course, to draw a

understanding which are all required for wisdom. Sharon Ryan calls this conception ‘Wisdom as Knowing How to Live Well’.

25 Note in passing that the exclusive focus on limitations characteristic of the bounded rationality movement misses about half of the phenomenon: for the ability to realize that some difficult task, contrary to first impression, is within the range of possible accomplishments, is also a mark of intelligence, in fact, a mark of high intelligence.
26 Personal communication.
conclusion all things considered, one which it proposes or bets will turn out to be the best possible in the fullness of time. In other words, while intelligence seeks answers which are optimal given a local problem situation and a limited horizon of evaluation, epistemic wisdom is answerable to the global problem situation and aims for vindication in the long run.

This feature of epistemic wisdom (henceforth simply ‘wisdom’) I will call inclusiveness. I take it to be one of two key attributes of wisdom. Inclusiveness accounts for several other traits commonly attributed to wisdom. The most common is the possession of considerable experience (of experiential knowledge): one common use of ‘wise’ makes it all but synonymous with ‘(very) experienced’, and closely linked to ‘knowledgeable’. Indeed, inclusive judgment, in the sense just outlined, cannot be caught by surprise: it had better have learnt from extended exposure to previous cases what might turn out in the situation at hand.

(2) Wisdom has an air of mystery; its phenomenology is somewhat paradoxical, and markedly different from that of intelligence. It is part of the commonsense use of wisdom that it defies a fully rationalistic account, that it sometimes at least seems to work like magic, unaccountably yielding superior results with none of the exertions of intelligence working full blast. It seems to operate without intermediate steps, appearing as a kind of intellectual vision: it is holistic and intuitive. Wisdom seems to have a synoptic view of the reasons and solutions procured by intelligence, yet to follow its own agenda, putting an end to fact-finding, reason-giving, argument-weighting. Like the folk-theoretical concept of vision, wisdom has an air of passivity: while intelligence is active, busy, wisdom requires a form of letting go, it seems to consist in a return to immobility.

Note that the phenomenology of wisdom need not be taken as an indication of its underlying nature. It provides no reason to deny the possibility that wisdom supervenes, in some sense, on natural properties and processes. To seem to work like magic is not the same as to be magical; to seem immobile is not the same as to be immobile, etc. Indeed, we know from cognitive science and other fields such as immunology that complex dynamical systems can exhibit counterintuitive behaviors which share some of the traits (holism, absence of intermediate steps, return to equilibrium, ‘unearned’ success,...) of the phenomenology of wisdom.

(3) Wisdom and intelligence are often hard to tell apart on the basis of their particular pronouncements (as was remarked earlier). The reason is that the globality of inclusiveness can be approximated by a sufficiently broad form of locality. Intelligence can, and its higher forms does in fact extend its horizon to a very large perimeter, and delivers solutions which are indistinguishable on the spot from those sanctioned by wisdom. It may only be in the very long run, over a very large series of episodes, and from a very wide perspective, that wisdom may pull apart, so to speak, from intelligence. Nor is eventual success, in any form, guaranteed. In fact, the wise person can die unrecognized and utterly defeated, because fate denied him the temporal horizon in which his wisdom would have become manifest.

Indeed, wisdom is not omnipotence, nor is inclusiveness omniscience. Wisdom implies risk-taking, that is responsibility. The second cardinal trait of wisdom as I see it is its irreducibly moral character. Even when restricted to cognitive or theoretical matters, rather than applied to the broader pursuit of a life worth living, wisdom is an attribute of a self. Nothing short of a self can take responsibility for putting an end to deliberation, on the basis of a willful and conscious (be it partly intuitive) taking-in of the entire situation. To use another vocabulary, nothing short of a self can pass judgment. Nothing short of a self can face the possible consequences of its decisions, and accept them when the time comes.

Epistemic wisdom, in the logical space I have proposed, stands at the intersection of knowledge and praxis. As partaking of knowledge, its distinguishing mark is inclusiveness. As partaking of praxis, its

27 Under a construal of intelligence which, as the one I propose, strongly links it to rationality. Flynn, in the passage quoted above, makes wisdom a component of intelligence: to me, this confuses the issue. Elsewhere in the book, he seems to deploy a different concept of wisdom, one more consonant with the one I am expounding. For example, on p. 159 he writes: “[... wisdom] exists only when human beings integrate the intellectual and moral virtues into a functional whole”.

28 “Wisdom must be intuitive reason combined with scientific knowledge-scientific knowledge of the highest objects which has received as it were its proper completion.” Nic. Eth. VI, 1141b. This brief sentence manages to combine three of the features listed in the text: knowledge (experience), completion (close to what I call inclusiveness), and intuitive character.

29 God’s ‘infinite wisdom’ is not a good model or paradigm of human wisdom.
distinguishing mark is responsibility. Selfhood, the necessary rooting of wisdom in a human individual, is presupposed by both: inclusiveness is relative to the unifying assessment of an individual, and responsibility is relative to the pragmatic, normative involvement of an individual.

To sum up, I propose to regard (epistemic) wisdom as the capacity to guide the epistemic trajectory of an individual by taking, in the space of reasons and in the temporal horizon, the broadest possible perspective, and to take responsibility for the individual’s final, “all things considered” decisions regarding her beliefs and other epistemic attitudes and dispositions, by drawing on extensive experience, as well as on the constraints of rationality and the fruits of intelligence, which decisions tend to lead to the best possible outcomes, as evaluated in the fullness of time. As in the cases of rationality and of intelligence, this definition is meant to allow for comparative assessments based on the eventual judgment borne by the community on the outcome: wisdom is not taken here to be an all-or-nothing affair.

3. Intelligence and wisdom in collective cognitive processes

Is it helpful to regard a glass eye as an eye? A computer virus as a virus? Synthetic urea as urea? There is of course no determinate answer to such questions. They begin to make sense once one fixes a further aim; for example, a glass eye is an eye of sorts for the purposes of restorative medicine; it is an eye-for-the-sake-of endowing a human face with a normal appearance, in a way comparable to the way a regular eye contributes to the appearance of a typical face. Synthetic urea is urea of sorts inasmuch as it can play in organic chemistry and in biochemistry the very role which is played by naturally-produced urea. A computer virus is a virus of sorts inasmuch as it spreads among computers and tends to harm them in ways comparable to biological viruses spreading among organisms and harming them.

The concepts of rationality, intelligence and wisdom are rather more slippery than those of eye, virus or urea, making the matter of their extensions more involved. Still, we now have working definitions which circumscribe their use in relation to individuals or individual minds. On the other hand, we are presented with two broad families of collective cognitive processes, thick and thin. The label given to these processes by Surowiecki invites us to ask in what sense it might be helpful to regard them as rational, intelligent or wise. I shall leave aside the issue of collective rationality, which has received extensive treatment in philosophy and the social sciences, and is not directly at stake in the wisdom-of-crowds literature. Rationality came in as a close relative of intelligence, and it was useful to clarify the connection between them before examining the properties of CCPs, but there is no novel problem raised by the distinction at the collective level.

Collective intelligence

So let us begin with the sense in which CCPs can be said to be intelligent. Turing’s argument in favor of the notion of machine intelligence was in large part pragmatic30: stripping the received notion of intelligence of some of its familiar traits results in a function which is central to human intelligence but can conceivably be attributed, under suitable conditions, to certain machines31. Can a similar move vindicate the notion of collective intelligence which is put forward by a small but growing intellectual cum social-political movement, drawing on a variety of sources: ethology and ‘swarm intelligence’, distributed artificial intelligence and computer science, social science, media studies?

The ground has been cleared: according to the working definition proposed earlier, an entity has intelligence to the extent that it has an understanding of the world which allows it to find in due time solutions to a large variety of pressing problems, in particular to expand the understanding itself. The part of the definition which lends itself easily to an extension is the solution-finding capacity; indeed, this is the path chosen by AI: if a machine can solve a problem (a problem being the search for a non-obvious solution, one which ‘normally’ requires human intelligence), it is ipso facto intelligent.

A crucial question awaited early AI. What should count as a solution? Does merely getting the end result qualify? Or is something more required: should the process leading the machine to the solution be similar to the path taken by human intelligence? The first criterion was named ‘weak equivalence’, the second ‘strong equivalence’, and a subsidiary question was: if weak is not good enough, how strong should strong be? The grain at which similarity should be demanded could not be too fine, as clearly the microstructure of a computer is vastly different from that of a brain. On the other hand, the weak equivalence criterion makes a soap bubble

30 Turing 1950.
31 In a similar spirit, Harsanyi 1977 shows to what end it might be useful to extend the notion of rational behavior to a robot.
intelligent, insofar as it ‘solves’ a highly non-trivial problem of energy minimization; and a sufficiently rich, well-indexed conversation book ‘solves’ the question-and-answer problem in a straightforward way. The weak vs. strong conundrum blended into the better-known problem of genuine understanding, made famous by Searle’s Chinese Room argument: neither the soap bubble nor the conversation book have any real understanding of the problem situation, which they can deploy in order to come up with a solution.

It is fair to say that AI is still struggling with these problems, and this should warn us against too facile an answer to our question. Our definition does indeed present us with a difficulty, which concerns the understanding clause. While it is easy to say that a CCP may, under certain conditions, provide a solution to a given problem, the sense in which it uses its ‘understanding’ of the (relevant aspects of the) world in order to come up with the solution is anything but obvious. What does it mean for a group of people to collectively understand anything?

For thick collective processes, there is an answer such that these processes come out as endowed with collective intelligence. Their products and inner workings are such that they can in principle be reproduced or simulated by an individual. So even though they may not be equivalent to individual processes to an unlimited fineness of grain, they can be reconstructed so as to exhibit considerably more similarity to individual processes than mere equivalence of final results. This makes it plausible to attribute collective understanding to the group inasmuch as a sufficiently tightly connected series of intermediate steps is individually understood and acted upon by various individuals in the group.

Actually it is far from obvious that this condition is met, particularly in the case of science. As recent work in social epistemology has shown, trust, authority and the division of labor play a large role. Both inference and reference are distributed so that no single scientist could in practice know with some precision what all the terms she uses refer to, according to the best available theories, or how to conduct the necessary inferences leading to propositions she accepts. But I will leave these rather subtle issues to the side, for they pale in comparison with the problem posed by thin collective processes.

What gets in the way in that case is the fact that agents have no access either to one another’s reasons, nor to the aggregation function which produces the final, ‘intelligent’ outcome of their joint labors. Even when the aggregation is performed by a human being relying on her ordinary rational resources, the thinness of the procedure by definition imply that she is barred from judging her constituents’ estimates on their merits: she must accept them at face value, and treat them as partial evidence in favor of a particular value or hypothesis regarding the outcome of an unknown or uncertain process. It is precisely this voluntary blindness which makes the results so surprising in some cases. Not only are the participants not in a position to ascertain the evidence available to the others in the group, or the validity of the aggregating function, they may not even know that they are participating in an episode of collective intelligence, let alone that they are successful. As Surowiecki says (p. xviii), sometimes “the people in the group aren’t [...] aware that [they are making decisions or solving a problem]”.

Thin collective processes may nonetheless, I submit, be regarded as exhibiting collective intelligence in a suitably extended sense, on two distinct interpretations, which I will call internalist and externalist respectively.

On the internalist interpretation, the one which immediately comes to mind, a thin CCP is, so to speak, Minsky’s ‘society of mind’ writ large. Just as Minsky, and cognitive science more generally, attempt to show how intelligence emerges from an assemblage of non-intelligent components, each one in charge of a narrowly defined task, thin CCPs produce intelligent behavior, or intelligent effects, by interconnecting in specific ways agents which are deliberately used as mere ‘sensors’ of a certain narrow segment of the world. One might be tempted to say that, in contradistinction to thick CCPs, there is no intelligence in a thin CCP, but intelligence of the process. This would not be quite right however, for the components of a thin CCP are not assumed to be entirely devoid of intelligence: the ‘sensing’ they accomplish can be complex and involve inner workings which are those of a fully intelligent creature. So there is, after all, some intelligence in the system, plus a specific intelligence of the system. Thus a thin CCP is more akin to the hybrid models favored in AI today, which are networks of complex, rather than simple, components.

34 Pursuing this track might lead one to place contemporary science closer to the ‘thin’ than to the ‘thick’ end of the spectrum.
35 Minsky 1985.
37 In fact, according to Hong & Page (this volume), they must be, at least to the extent that the variety of the individual contributors doesn’t make up for their low competence.
The upshot is that a thin CCP may be regarded as intelligent if one is prepared to sever the link between the two components of intelligence: the world understanding is achieved, in a distributed fashion, by the individual members of the group (each one possessing a partial yet genuine understanding), while the search for a solution is achieved by the architecture of the system in a purely formal (i.e. semantically blind) fashion. Examples which come to mind are search engines such as Google38 and other internet-based tools, or perhaps the entire Web itself.

On the externalist interpretation39, a thin CCP is viewed like a sophisticated tool in the hands of a discerning agent or agency. Somewhat like the advanced software used in design, investment, forecasting etc., such a set-up is recruited by an intelligent individual in order to achieve a cognitive end which is presumably superior to what he would have obtained without it. The intelligence here consists in setting-up and making good use of a complex tool. A fine example is provided, according to Surowiecki’s account, by John Craven’s search for the lost submarine Scorpion40. In such examples, the intelligent system comprises the tool and its user.

The two interpretations are not mutually exclusive. In fact the externalist one depends on the internalist one, as it would not be an intelligent strategy to set up and use a complex, expensive tool if it didn’t deliver, in the case at hand, an ‘intelligent’ assistance. The reverse is not true: a thin CCP may conceivably operate without some exterior operator harnessing it for its own purpose. In fact, this is the situation of the invisible hand of free market economy, and more generally of self-organized social systems. It might be doubted that such a system is self-aware in the way in which individual intelligence appears to be. But what we mean by self-awareness, and what might correspond to it from a scientific standpoint are far from clear; besides, there is no reason to demand that collective intelligence resemble ordinary intelligence in every way.

To sum up, we may offer the following stipulative definition of collective intelligence: A system exhibits collective intelligence insofar as there exists within the system fragments of world understanding which are exploited by the system in such a way as to produce in due time solutions to a large variety of pressing problems, including problems arising from the need to further world understanding. The definition does not demand that the solutions be the outcome of an intention of the system to find them. Under this definition, then, both thick and thin CCPs, albeit for different reasons, may be said to be collectively intelligent.

The conceptual question has been answered. The empirical question has not: it makes sense to inquire whether some CCPs do in fact possess collective intelligence. We can regard, as I have proposed, the idea of thin collective intelligence as conceptually coherent, without thereby assuming that it is empirically sound. Compare: Turing convinced many that we would eventually accept the idea that machines\textit{ might} be able to think, or that they\textit{ might} be considered intelligent. But this did not settle the question of the actual intelligence of the real machines which we can in fact build. Many agree that, as far as our present machines are concerned, it is still at best very primitive, and the new wave of ‘artificial general intelligence’41 is an attempt to remedy this. For thin CCPs as for traditional AI systems, we must ask how ‘intelligent’ they can be, under sufficiently general conditions42. Further, we may want to ask how close they are to becoming\textit{ truly} intelligent, in the sense of meeting the versatility criterion: applicability to a wide variety of problem situations, and fluid transfer from one to the other. This last question is precisely the one which the artificial general intelligence movement thinks has not been answered in the case of machines.

\textit{Collective wisdom}

We can approach the problematic notion of collective epistemic wisdom from two sides. On the one hand, we have a pre-theoretical notion provided by a familiar collective process which might be thought to partake of wisdom. On the other hand, we have a specification of the concept by ways of its relation to neighboring concepts. Specifically, we have a ‘fourth proportional’ description: collective epistemic wisdom (if it exists) is that notion which stands to collective intelligence in the way individual (epistemic) wisdom stands to individual intelligence, and which stands to individual (epistemic) wisdom in the way collective intelligence stands to individual intelligence43; it is an \(x\) such that

\[
(E1) \frac{x}{\text{collective intelligence}} = \frac{\text{individual wisdom}}{\text{individual intelligence}}
\]

38 See Origgi, this volume.
39 Clark & Chalmers 1998.
41 Goertzel & Pennachin 2007.
42 Hong & Page (\textit{op. cit.}) provide general, formal conditions under which a CCP can be expected to behave ‘intelligently’.
43 I am indebted to Jon Elster for suggesting this formulation.
(E2) \(\times \) individual wisdom = collective intelligence / individual intelligence

Note that the inexact nature of the relations prevent (E1) and (E2) from being equivalent, as they would be in the case of numbers; they are distinct equations.

We would like to know whether thin CCPs deserve the name given them by Surowiecki, ‘wisdom of crowds’: does it make sense to credit them with (collective) wisdom? We can seek an answer either by comparing them to the familiar pre-theoretical instance, or by checking whether they satisfy equations (1) and/or (2). We can also combine the two strategies, and ask, first, how the traditional entity fares with respect to the equations, and, second, how thin CCPs compare on that count.

So, first, what is the traditional entity which I have in mind? It is made up of a wide array of real-life social processes whose main purpose or effect is to produce within the community an increase in world understanding and epistemic capacities. It includes fairly organized bodies of explicit, fully articulated beliefs, which are widely shared and are to a large extent common knowledge, serving as a reservoir of epistemic and other behavior-guiding resources for both individual and collective tasks, ensuring in particular an essential function in coordination and cooperation: scientific practices, but many other things besides, such as formal and informal education and training, expert panels, media and publishing, formalized discussions and informal conversations, literary traditions, etc. But it also includes unarticulated assumptions, social norms, inculcated (rather than explicitly taught) skills, practices and perspectives, which serve the function of an invisible guardian angel for the community. Most of these processes will be typically thick, in our technical sense, although some ‘thinness’ may appear in the guise of non-conscious constraints or habits which contribute to the outcome unbeknownst to the participants, and are thus insensitive to their consciously held beliefs and preferences.

This heterogeneous lot largely overlaps with culture, but includes only its beneficial parts. Besides, for the sake of parity, we should restrict ourselves, at the cost of some arbitrariness, to those cultural processes whose main function is epistemic. Now we can ask, first, why this set of cultural processes might be thought, pretheoretically, to partake of wisdom, and, second, whether it satisfies our equations.

The first question is easily answered. Just as the wise person has drawn the lessons of prolonged experience, accumulated a wealth of do’s and don’t’s, weeded out false beliefs, destructive desires, utopian plans, the culture of a community comprises a shared set of maxims and skills which shield it from disastrous enterprises, and keep its members from coming to grief. On the positive side, just as her wisdom allows a person to zero in on the right answer, the plan to follow, and forego the slow and laborious process of examining and eventually rejecting a whole series of inferior hypotheses or plans, culture (in favorable cases) proceeds directly to the heart of the problem at hand, guiding the community towards the best response.

Now does this form of cultural wisdom satisfy equations E1 and E2? As for E2, the answer is fairly straightforward. The passage from individual to collective intelligence involves (i) lifting the obligation of co-location of the epistemic resources and thus (ii) allowing ‘blind’ processes to play a part in the processes leading to a solution of the problems at hand (the blindness may extend to the solution itself, which may not necessarily appear as such in any conscious mind.) The kind of process which we are examining now seems to stand to individual wisdom in a similar relation: those epistemic resources which result in the culture’s wisdom are not located in any single member of the community, and the end result relies to a large extent on processes such as division of labor and responsibilities, confrontations of opinions, which can be partially blind (as when the confrontation terminates without explicit agreement), or again tacit exclusion of certain potential solutions.

Whether equation E1 is also satisfied is a more involved matter. Going from individual intelligence to individual wisdom implies a coordinated series of changes, three of which appear as crucial: the spatial and temporal horizons expand from local to global; inference and computation give way to holistic decision; impersonal, objective problem-solving takes second place to personal responsibility. If we start from collective intelligence, we have no concept of a person ready at hand. The challenge then is to retrieve a functional equivalent of a person, a self of sorts, in collective processes. The concept of a collective self is contentious, but for present purposes we can perhaps bypass the controversy. The set of processes under consideration belong to the core of the community’s culture: it contributes to the self-perpetuation of the community across inessential changes as well as hard times. It is a commonplace that a society’s culture either defines, constitutes, or enables that society’s identity. If we accept that view, the set of cultural epistemic goods of the

44 In contradistinction with so-called popular wisdom (in French, ‘sagesse des nations’) in at least two respects. First it is not limited to maxims and sayings, or to shared beliefs, public norms, etc. Second, it is restricted to those practices which are considered by the community to foster its essential interests, all things considered and in the fullness of time. By contrast, popular wisdom is often used with derisive intent, as referring to empty or erroneous generalizations, or (in a wider sense) as sanctioned practices which in fact have a deleterious effect.
community is constitutive of the group’s identity. We retrieve the needed functional equivalent of the self, and the ‘all things considered’ goodness of wisdom falls out as well: what is good for the group as such is precisely the perpetuation of its culture, hence its identity, across change, and it is wisdom again which steers the group in the ‘right’ direction. Cultures which fall apart as a result of endogeneous or exogeneous factors simultaneously lose their wisdom and their identity.

The upshot is that one may indeed regard traditional, ‘thick’ CCPs embedded in culture as satisfying both equations, and thus fully deserving of the label.

Finally, how do thin CCPs, the focus of the wisdom-of-crowds movement, fare? Again, E2 can be regarded as satisfied, for much the same reasons, and again the serious problem concerns E1, due to the requirement of some analog of personhood. And here comes the rub: this requirement would seem to directly contradict the essential ‘blindness’ of thin collective processes. Even if we were prepared to grant some form of collective personhood to the participants in a given thin CCP operation, on the mere basis of their participation in the process, the resulting ersatz self would lack essential attributes of selfhood such as self-reflection and responsibility. A stronger form of selfhood would perhaps result from a ‘common spirit’, such as binds together a tightly-knit community, something like a rowing team, a drama company or an orchestra performing, an army brigade in action, constantly coordinated and recalibrating their mutual expectations, blending into a ‘we’ capable of we-thoughts, we-intentions, we-actions. But such a collective would be maximally distant from the sort of group which can support thin CCPs, because it would lack precisely the diversity and independence required from a well-functioning wisdom-of-crowd setup. It would fall prey to a form of ‘groupthink’.

We have thus finally reached an answer to our initial question: the wisdom of crowds has not much to do with wisdom, beyond differing from individual intelligence. There does exist something which may deserve the name of collective wisdom, but it is nothing other than a set of culturally transmitted beliefs and practices which are at considerable distance from the wisdom of crowds in the focal sense (thin CCPs) which makes it interesting to Surowiecki.

Of course, this is not to rule out the possibility that recommending a thin CCP to settle or regulate a particular issue, or to systematically favor such setups in a wide variety of situations, may be regarded as wise, either on the part of a single social or political engineer or of a group. But the wisdom would not belong to the thin processes proposed.

REFERENCES

Andler, D., Rationality, intelligence and wisdom, forthcoming
Goldman, A., Pathways to Knowledge, Private and Public, Oxford: Oxford University Press, 2002
Hardwig, J., Epistemic dependence, Journal of Philosophy 82 (1985) 7, 335-349
Hofstadter, D., Metamagical Themas, New York: Basic Books, 1985
Mackay, Ch., Extraordinary popular delusions and the madness of crowds, 1852; repr. New York: Harmony Books, 1980